Single-Ended Prediction of Listening Effort Based on Automatic Speech Recognition

نویسندگان

  • Rainer Huber
  • Constantin Spille
  • Bernd T. Meyer
چکیده

A new, single-ended, i.e. reference-free measure for the prediction of perceived listening effort of noisy speech is presented. It is based on phoneme posterior probabilities (or posteriorgrams) obtained from a deep neural network of an automatic speech recognition system. Additive noisy or other distortions of speech tend to smear the posteriorgrams. The smearing is quantified by a performance measure, which is used as a predictor for the perceived listening effort required to understand the noisy speech. The proposed measure was evaluated using a database obtained from the subjective evaluation of noise reduction algorithms of commercial hearing aids. Listening effort ratings of processed noisy speech samples were gathered from 20 hearing-impaired subjects. Averaged subjective ratings were compared with corresponding predictions computed by the proposed new method, the ITU-T standard P.563 for single-ended speech quality assessment, the American National Standard ANIQUE+ for single-ended speech quality assessment, and a single-ended SNR estimator. The proposed method achieved a good correlation with mean subjective ratings and clearly outperformed the standard speech quality measures and the SNR estimator.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

مدل میکروسکوپی دوگوشی مبتنی بر فیلتر بانک مدولاسیون برای پیش گویی قابلیت فهم گفتار در افراد دارای شنوایی عادی

In this study, a binaural microscopic model for the prediction of speech intelligibility based on the modulation filter bank is introduced. So far, the spectral criteria such as the STI and SII or other analytical methods have been used in the binaural models to determine the binaural intelligibility. In the proposed model, unlike all models of binaural intelligibility prediction, an automatic ...

متن کامل

Predicting Automatic Speech Recognition Performance Over Communication Channels from Instrumental Speech Quality and Intelligibility Scores

The performance of automatic speech recognition based on coded-decoded speech heavily depends on the quality of the transmitted signals, determined by channel impairments. This paper examines relationships between speech recognition performance and measurements of speech quality and intelligibility over transmission channels. Different to previous studies, the effects of super-wideband transmis...

متن کامل

DNN-Based Automatic Speech Recognition as a Model for Human Phoneme Perception

In this paper, we test the applicability of state-of-the-art automatic speech recognition (ASR) to predict phoneme confusions in human listeners. Phoneme-specific response rates are obtained from ASR based on deep neural networks (DNNs) and from listening tests with six normal-hearing subjects. The measure for model quality is the correlation of phoneme recognition accuracies obtained in ASR an...

متن کامل

Speech Emotion Recognition Based on Power Normalized Cepstral Coefficients in Noisy Conditions

Automatic recognition of speech emotional states in noisy conditions has become an important research topic in the emotional speech recognition area, in recent years. This paper considers the recognition of emotional states via speech in real environments. For this task, we employ the power normalized cepstral coefficients (PNCC) in a speech emotion recognition system. We investigate its perfor...

متن کامل

A Database for Automatic Persian Speech Emotion Recognition: Collection, Processing and Evaluation

Abstract   Recent developments in robotics automation have motivated researchers to improve the efficiency of interactive systems by making a natural man-machine interaction. Since speech is the most popular method of communication, recognizing human emotions from speech signal becomes a challenging research topic known as Speech Emotion Recognition (SER). In this study, we propose a Persian em...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017